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Rotating a flow or a solid surface is an effective method for intensifying or suppressing 
turbulent transfer. Rotation is widely employed in modern power plants. Research :in this 
direction is becoming increasingly broader. 

Swirling of flow or rotation of the surface can change the friction and heat and mass 
transfer primarily by two mechanisms [1-3]. First, an increase in the velocity vectorat the outer 
boundary of the boundary layer due to rotation of the flow or the surface increases, by increasing 
the turbulent diffusion coefficients, the gradients of the average velocity and correspondingly the 
tangential stresses and heat fluxes. Second, in rotating flows the flow and heat transfer 
are affected by the effect of the centrifugal and Coriolis body forces acting on the turbu- 
lent structure of the flow. It is well-known that body forces can both intensify and sup- 
press turbulent diffusion [1-3]. Buoyancy effects due to gradients of the gas density, which 
arise in nonisothermal and compressible flows, should also be included among body forces. 

Especially complicated flows are observed when all of the factors indicated above are 
present simultaneously, as happens, for example, in real flows on the rotating blades of gas 
turbines. The solution of the problem of friction and heat transfer for such complicated 
gas-dynamic conditions is an important problem. 

A method of calculating the effect of centrifugal forces on turbulent heat and mass 
transfer in the boundary layer of swirling and curvilinear flows has been developed in a 
number of works [i, 4, 5]. It is based on taking into account the changes produced in the 
velocity pulsations normal to the surface by centrifugal forces. As a result, expressions 
were obtained for the tangential stresses and heat fluxes. The method is similar to the 
analysis made in [6]. But, in contrast to [6], the application of the law of conservation 
of angular momentum for a separate pulsational particle of fluid makes it possible to calcu- 
late the friction and heat transfer without introducing additional empirical constants. Com- 
paring the two methods showed that, in spite of a number of assumptions which were made, the 
working relations obtained for swirling and curvilinear flows agree satisfactorily with the 
experimental data [i, 4, 5]. 

Heat transfer and friction at rotating curvilinear walls, in the general case in swirl- 
ing flows, can also be analyzed from this viewpoint, though the problem becomes significant- 
ly more complicated. 

We underscore especially the fact that besides the effects of curvature and rotation, 
which act on the turbulence field, in such systems significant restructuring of the average 
velocity fields occurs as a result of the appearance of secondary and detached flows. This 
in turn can give rise to a change in heat transfer and friction than is produced by centri- 
fugal and Coriolis forces. This problem is of interest in itself, and we shall not consider 
it in this paper; the velocity distribution outside the boundary layer is assumed to be known 
and is found, to a first approximation, from the solution of the nonviscous flow. 

I. Formulation of the Problem. Choice of Coordinate System. Derivation of Equations 
of Motion of a Turbulent Particle of Fluid 

We shall consider the problem of the effect of centrifugal and Coriolis forces on turbu- 
lent velocity pulsations in the most general case of nonisothermal flow over a rotating sur- 
face. A schematic diagram of the flow is shown in Fig. la. The curvilinear surface N rota- 
tes relative to the OO' axis with constant angular velocity ~ 0. A gas flow is directed at 
this surface. The velocity u 0 of the gas flow outside the boundary layer is given by the ex- 
pression 
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Fig. i 

u 0 = Uo(I~ s i n  0 �9 CoS q~ + I~ s in  0 �9 s i n  r ~-  I R cos  0), 
(Z. l )  

where I; x ,  ~, andIa are unit vectors in the direction of the x, ~ ,  and R axes. The vectors 
--~o, ~0 X R, and R:'are oriented in the direction of these unit vectors. 

The streamlines at the suface are not oriented in the same direction as the rotation 
axis and make an angle qJ with it. The curvature of the streamlines characterized by the 
radius vector r0,/whose direction is determined by the angle 81 and ~z (Fig. Ib): 

ro = rd(I~ s in  01 - cos  r Jr Iv  s i n  ~1 " s i n  01 + I a  cos  01). ( 1 . 2 )  

The angles 8, ~ and 8z, ~'z are related with one another by the condition that the vectors u 0 
and ~0 are orthogonal to one another: 

u o �9 r o : O .  
( 1 . 3 )  

Substituting Eqs. (i.i) and (1.2) into Eq. (1.3), we obtain 

cos  r = - - c t g  0 - c t g  01 - cos  r -4- I / s i n  2 r - -  c t g  ~ 0 �9 c t g  2 00'. 

Following [i, 4, 5], we write the equation of motion for a particle of fluid in the co- 
ordinate system moving with the particle, so that only the pulsational motion in the direc- 
tion of the vector r0 remains. As previously, the viscous effects of the interaction of a 
single particle of fluid with the surrounding medium are neglected. The vector equation of 
motion of the turbulent particle is as follows: 

p, d u ~ / d t  = p J  - -  V P  (1.4) 

where Ps and u s are the density and the velocity vector of the fluid particle and p is the 
average pressure. The quantity fiis the sum of all inertial forces acting on the particle in 
pulsational motion. In the general case, when the wall and the flow rotate, the motion of 
the turbulent particle can be represented as a superposition of two rotations, determined by 
the rotation of the surface and the rotation of the gas flow relative to the surface. The 
angular velocity of the fluid particle is equal to Q0s, in the first case and ~s in the second 
case. In such a coordinate system rotating with the fluid particle, only the motion of the 
particle normal to the surface of the body remains. Then the total body force acting on the 
fluid particle can be written in the form [ = ~0 + [i + f~, where ~|0 is the mass force giving 
rise to velocity pulsation in a flat boundary layer in the absence of rotation. The mass 
forces fl/and f~ due to rotation of the system and the flow, repsectively, are determined by 
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the expressions 

d~~ R];  ( 1 . 5 )  f l = - -  2 f t o , • 2 1 5  •  • j 

, doa s ] 
f ~ = - -  2(%• X(cos •  Xr  o .  (1.6) 

The first term on the right-hand side of the relations (1.5) and (1.6) is the Coriolis force, 
the second term is the centrifugal force, and the third term is due to the nonstationary char- 
acter of the rotation of the system or the flow. In what follows, for simplicity, we confine 
our attention to stationary rotating flows. 

As done previously in [i, 4, 5], we assume that the body forces affect predominantly the 
component of velocity pulsations that is normal to the surface. Then we wrSte the projection 
of Eq. (1.4) on a direction normal to the surface (in so doing, we~i assum~ that i f2 .I~, '  = 

- [ 

o~r = u~/r, where u s is the velocity of the fluid particle along the surface over which the ~ 
fluid flows) as follows: 

2 dr - - / o - -  2 f t o ~ • 2 1 5  

--  o2 (20~  • u) + !~ o x (f~o • R) �9 L + F ~  7" 

( i .7)  

The relation (1.7) was written taking into account the fact that the projection of the pres- 
sure gradient on a direction normal to the surface has the form 

V P - L ~ o p - - p u  2 Or r 9 [2P'o • u + fto X (~o • R)] �9 L ,  

In particular, if we set ~o = ~os ~ 0, in Eq. (7), then we obtain the equation employed in [i, 
4, 5] for curvilinear and swirling flows. We assume that during the pulsational motion of 
the fluid particle the circulation of the particle usr ~ (ur)T+A r (r = cly, where y is the 
distance from the wall; c I = 1 for flow over a concave surface and c I = --i for a convex sur- 
face). By analogy to [4], expanding the circulation and density in a series~in:?~'ia~d neglect - 
ing the quadriatic and higher-order terms, we have 

aur a (ur) 2 
u~r z ur -- -~y g, (u~r) 2 ,.~ (ur) 2 @ 

P-- ,~ t 1 --t/9~176 
Ps " ~  

Since ~0sR ~ ---- O0(R 4- AR) 2, where AR ---- c2g cos 01, we obtain 

g~o~ = ~o( 1 @ 2c2g/R cos 01). 

The coefficient c 2 = 1 or --i, if the flow over the surface is on the same side of the 
surface as the axis of rotation or on the opposite side, respectively. Using the relations 
obtained, Eq. (1.7) can be put into the form 

i au'y 2 
2 au =c i ( /o  + ky). (1.s)  

Here 

k = - -  2 (cos 0 �9 s in  01. s in  q)l - -  cos 01 �9 s in  0 �9 s in  qo) X 
(1.9) 
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t Our u Op 2c2u cos 01) Qo + 
X - v Oy 9 0 y  + R 

4 ,oo 0 \ (2 ou  
ooy + : ) n o n -  + i oy ) 

It is convenient to represent the function k as 

k = kokl, (i. i0) 

where the parameter k o 2u Our reflects the effect of body forces in curvilinear flow but 
r ~ Oy: 

w i t h o u t  r o t a t i o n  o f  t h e  e n t i r e  s y s t e m ;  k I i s  a f u n c t i o n  t h a t  d e s c r i b e s  t h e  c o n t r i b u t i o n  o f  
the rotation of the system as well as buoyancy effects. From the relations (1.9) and (i.i0) 
we obtain 

k 1 = --  2 (cos 0 �9 sin Ox �9 sin q~l - -  cos O~ �9 sin 0 .  sin qD) X 

r ~ o +  90y  2c.,~ oeos01 + 
X | 2u 2 Our 2R Our 

1, 2 0y  r z Oy 

/ 10P 2c. cos 01"~ / u 0 9 \  
= p Oy~ 

+ us  our / + + 2ou, r 
\7 or 7 i q /  r0u/ 

2. Laws of Heat and Mass Transfer and Friction for a Turbulent Boundary Layer in 
Rotating Systems 

We now find an expression for the normal component of the pulsational velocity. 
this integrate Eq. (1.8), assuming that k is constant to a first approximation: 

(1 . i i )  

For 

t �9 

uv = u y o F  . ( 2 . 1 )  

Here U'y 0 is the pulsational velocity in the standard boundary layer (flat nonrotating plate 
and no swirling of the flow). 

Under conditions when turbulence is intensified by centrifugal and Coriolis forces 
clk I > 0), by analogy to flow at a concave wall [4], the function F is given by 

F =  [ 1 _  (u]~Zqkok, ] ' / "  
tT/ 

( 2 . 2 )  

We describe the suppression of turbulence by body forces with the help of an approximat- 
ing expression of the form [4] 

F = t + ~T j  ~ j  ( qk~<O) .  ( 2 . 3 )  

Using the relations (i.ii) and (2.1)-(2.3), under the assumption that the field of body 
forces has no effect on the longitudinal pulsations, and the cross-correlation coefficient 
remains the same as for nonrotating flow, we obtain the following expressions for the Rey- 
nolds stresses and turbulent heat fluxes: 

252 



.... I t , i 

u~uv = uo~uo~ F; ( 2 . 4 )  

, , , , ( 2 . 5 )  
T u v = Touo~ F.  

The tangential stress and heat flux at the wall can be calculated, using Eqs. (2.4) and 
(2.5), just as is done in [i, 4, 5]. For this k I must be averaged over the thickness of the 
boundary laver. Using power-law profiles of the dimensionless velocity and temperature 
u/uo = (Y/6) n, and (T -- ~t)/(To--Ts~ ~ (y/6T) n, respectively, and the equation of state of an 
ideal gas P/Po = T0/T, we obtain from Eq. (i.ii) 

k I = N  2 ~ c 0 s o  1 ( r  
2(t + n +  ~:n) R 

JVr o 
- -  - - ~  (cos 0 �9 sin 01 �9 s in  % - -  cos 01 �9 s in  0 �9 s in  q~) • ( 2 . 6 )  

where N = QoR/u 0 is the inverse Rossby number and ~ = Tst/T 0 is the nonisothermality factor. 
Relations similar to Eqs. (2.4) and (2.5) were derived in [5] for the heat and mass transfer 
functions in the form of superpositions for a nonrotating system (kl = i) 

(cflclo)Re** = (St'Sto)Re~* = TTW~T'c" 

Here WT = [2/(V~ + I)] 5 is the nonisothermality function; the function ~ = I/cos ~0.7~ 
takes into account the effect of an increase in the velocity gradients owing to swirling of 
the flow on heat transfer and friction; and the function ~c takes into account the effect of 
centrifugal and Coriolis forces. 

It is obvious that for a rotating system ~c must be determined using Eq. (2.6). Then 
the following expressions will be the analogs of the formulas, derived in [5] for the effect 
of the curvature of the streamlines on turbulence, for the general case of a rotating curvi- 
linear surface: 

6.. 71to,1o  
1 F c =  t + 1 , 8 . t 0  a r o ~  !" 

6"*c~ \-o,n~ 
T c = ( 1 - - 2 , 2 . t 0  3 r: 1 )  

(c~ > 0 ); 

( j l < o )  

(2.7) 

(2.8) 

Thus the formulas (2.7) and (2.8) make it possible to estimate the change in the surface 
friction and heat transfer owing to the effect of centrifugal and Coriolis forces and buoy- 
ancy effects on the structure of turbulent diffusion. The parameter characterizing the ef- 
fect of these factors is kl, described by the expression (2.6), which in turn depends in a 
complicated fashion on the intensity N of rotation, the radius of curvature r 0 of the surface, 
the thickness 6 of the boundary layer, the isothermality factor @, the degree n of filling in 
of the profile, etc. For this reason, it is best to consider first a number of simple, parti- 
cular cases of rotating flows or systems. 

3. Particular Cases of Rotating Flows 

Swirled Flow in a Stationary Channel. Since r o = Rc/s in2~ (R c is the radius of the 
channel axis and @ the velocity vector at the boundary of the boundary layer), c I = 1, and 
N = 0, we obtain a working formula for the coefficient of friction and heat and mass transfer 
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To a first approximation, the degree of filling in of the velocity profile can be assumed to 
be the same as in a standard flow: n = n o = 1/7. This relation was obtained in [5] and it is 
in good agreement with the experimental data on heat and mass transfer in swirled flows under 
different conditions: quasi-isothermal, significantly nonisothermal, and with different 
thicknesses of the dynamicand diffusion layers (Sc ~ i). 

In the case of swirled flow in a stationary pipe the centrifugal forces intensify heat 
exchange with the pipe wall. An increase in the velocity vector at the outer boundary of 
the boundary layer (effect of the geometric factor) also results in intensification of heat 
transfer. 

Flow in a Pipe Rotating along Its Axis. For this case ~g ~ = N,  ro = R/sin2~,cl = I , Q  = 
I, O : 90 ~ O z : 0, R : Rc~ From Eqs. (2.7) and (2.8) we have 

Tc,= ( 1 -  2,2- 1 0 3 ~ A )  -~ , 

if the complex 

-- t) (n + t) (2n ~- 1) 48 ) 
A~--N'2 (~; 2(l+n-i-~pn) Rc + 

-4- N sin(p (n q- i  l? (~ - - t ) ( .  + i) ~ )  ( _~--t__ 1 1 + nr -- + sine q~ I + 2 (t + n~p)] < 0; 
10,162 

Thus, depending on the direction of the heat flux, the rotation of the pipe can both 
intensify and suppress turbulent diffusion. Under close to isothermal conditions (~ = i), 
the effect of body forces in a rotating pipe is described by the formula 

i03~**[48~r i) �9 e ]]-0,115 ~ c = { i + 2 , 2 .  - - f f - L ~ + N s i n ( p ( ~ - - n - - - - r a n  ~]] . (3.1) 

It follows from Eq. (3.1) that centrifugal and Coriolis forces suppress turbulent heat 
and momentum transfer at the wall. At the same time, when the velocity vector increases as 
a result of rotation of the pipe relative to the flow, heat emission and friction are inten- 
sified. Then the total coefficient of heat and mass transfer can be both greater and less 
than for flow in a stationary pipe. In the initial sections of the channel, when the bound- 
ary layer is thin and the flow lags significantly behind the rotation of the pipe, the inten- 
sification of turbulent transfer owing to an increase in the velocity gradients can exceed 
the effects of suppression of turbulence by body forces. Farther downstream the rotation of 
the flow approaches rigid body rotation, intensification effects become small, and the stabil- 
izing effect of rotation on friction and heat transfer will predominate. 

Figure 2 shows the decrease in the relative friction and heat transfer functions for flow 
in a rotating pipe. The points i are the experimental data, obtained by Levy and White and 
analyzed by V. K. Shchukin [7], for the hydraulic resistance in rotating pipes; the points 2 
refer to experiments on friction [8]; the points 3 are the data on heat transfer [9]; and, 
the line represents the calculation according to the formula (3.1) for 6/R = i. It is obvious 
that the agreement between the calculation and experiment is only qualitative. The quanti- 
tative disagreement could be due to errors in the theoretical analysis as well as incorrect- 
ness in comparing the results of theory and experiment. Thus the ratio 6/R in the experiments 
can be less than unity, and vibrations of pipes and formation of Taylor vortices have a strong 
effect on the flow. 
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Rotation of a Rectilinear Channel with the Rotation Axis Perpendicular to the Pipe Axis 
(Fig. 3). Such flows occur in radial channels of rotating elements of power machines, flat 
blades, etc. We write down for each of the four walls of the channel the values of the param- 
eters for gas flow entering from the rotation axis. 

Wall 1 (rarefaction side): r0r-~oo, ci = --|, 01 = 90~ ~i = 270~ 8 = 01 

"~3 6**N . .  ]-o,115 
T c =  t q - 2 , 2 ,  lU ---if-t1 + n ) j  . ( 3 . 2 )  

On this wall turbulence is suppressed. 

Wall 2 (end wall): r0-+ oo, c l= --I, 0 i = 90 ~, ~] = 180 ~ 0 = 0, ~c= i. 
effect on turbulence on this surface~ 

Wall 3 (pressure side): ro-+ ~, ci ~ --i, 0 i = 90 ~ ~I = 90~ 0 = O, 

Body forces have no 

5** V 1 ~ ~F c =  t + i , 8 . 1 0 3 = - ~ ( l + n )  ( 3 . 3 )  

Intensification of turbulence is observed on this surface. 

Wall 4 (end wall): r0-+ oo, c I = --i, 01 = 90 ~, ~i = 0, 0 = 0~ Tc= i. Here, as on wall 2, 
body forces have no effect. 

If the flow in the channel is directed in the opposite direction, i.e., from the peri- 
phery toward the rotation axis (8 = 90~ the formula (3.3) is valid for the wall 1 and turbu- 
lent transfer will be intensified, while at the wall 3 turbulent transfer will be suppressed 
(formula (3.2)). 
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Such flow is analyzed in detail in [i0]. The case of flow away from the axis is con- 
sidered and experimental results showing only the effect of rotation on the turbulent transport 
of momentum are presented. It was established that turbulent transfer is suppressed on the 
rarefaction side and intensified on the pressure side (points i and 2, respectively, in Fig. 
4). It is interesting to note that turbulence stabilization and destabilization effects are 
very similar and can be described by the same relations. Calculations with the formula (3.2) 
(solid line) and (3.3) (dashed line) are plotted here also. One can see that the calculation 
agrees with experiment both qualitatively and quantitatively, and the theoretical dependences 
for the pressure and rarefaction sides are virtually identical. 
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